MATH3210 - SPRING 2024 - SECTION 004

HOMEWORK 7 - SOLUTIONS

Problem 1 (20 points). Prove that if f is defined on (a,b) is differentiable at ¢, f(c) # 0, and
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Solution. Note that
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Since f is differentiable at ¢, it is continuous at ¢, and since f(c) # 0, the limit of m as
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Problem 2 (80 points). For each, either calculate f’'(0) with justification, or prove that f is not
differentiable at 0. You may assume continuity and the usual properties and formulas for the function
sin. [Hints: Try to sketch a graph if you can to get an idea. The points x,, = 1/(27n) are especailly
useful in the graph and proofs for (c) and (d). The squeeze theorem is useful!]
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Solution. (a) We claim that f is differentiable at 0. It suffices to show that the left- and right-hand
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limits of Q0 — & exist and are equal. Note that
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(b) We claim that the g is not differentiable at 0. As in (a), we will use the left- and right-hand
limits, showing that they are not equal. We compute
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and

lim M: lim 9:O.
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(¢) We claim that h is not differentiable at 0. Indeed, if h was differentiable at 0, then lim,_,o (2)

exists. Since z, = 1/(mn + 7m/2) converges to 0, it follows if h were differentiable we would
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require that lim,, exists. But
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Since this sequence does not converge, h cannot be differentiable at 0.

(d) We claim that k is differentiable at 0. Indeed,

lim x?sin(1/x)
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This limit exists by the squeeze theorem, since |z sin(1/x) — 0| = |z sin(1l/z)| < |z| — 0.

= ilg})acsm(l/x) =0.



