MATH3210 - SPRING 2024-SECTION 004

HOMEWORK 7 - SOLUTIONS

Problem 1 (20 points). Prove that if f is defined on (a, b) is differentiable at $c, f(c) \neq 0$, and $g(x):=1 / f(x)$, then $g^{\prime}(c)=-\frac{f^{\prime}(c)}{f(c)^{2}}$.
Solution. Note that

$$
\lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c}=\lim _{x \rightarrow c} \frac{1 / f(x)-1 / f(c)}{x-c}=\lim _{x \rightarrow c}-\frac{1}{f(x) f(c)} \cdot \frac{f(x)-f(c)}{x-c}
$$

Since f is differentiable at c, it is continuous at c, and since $f(c) \neq 0$, the limit of $\frac{1}{f(x) f(c)}$ as $x \rightarrow c$ is $\frac{1}{f(c)^{2}}$. It follows from the definition of limits that

$$
g^{\prime}(c)=-\frac{f^{\prime}(c)}{f(c)^{2}}
$$

Problem 2 (80 points). For each, either calculate $f^{\prime}(0)$ with justification, or prove that f is not differentiable at 0 . You may assume continuity and the usual properties and formulas for the function sin. [Hints: Try to sketch a graph if you can to get an idea. The points $x_{n}=1 /(2 \pi n)$ are especailly useful in the graph and proofs for (c) and (d). The squeeze theorem is useful!]
(a) $f(x)= \begin{cases}0, & x<0 \\ x^{2}, & x \geq 0\end{cases}$
(b) $g(x)= \begin{cases}0, & x<0 \\ x, & x \geq 0\end{cases}$
(c) $h(x)= \begin{cases}0, & x=0 \\ x \sin (1 / x), & \text { otherwise }\end{cases}$
(d) $k(x)= \begin{cases}0, & x=0 \\ x^{2} \sin (1 / x), & \text { otherwise }\end{cases}$

Solution. (a) We claim that f is differentiable at 0 . It suffices to show that the left- and right-hand limits of $\frac{f(x)-f(0)}{x-0}=\frac{f(x)}{x}$ exist and are equal. Note that

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)}{x}=\lim _{x \rightarrow 0^{+}} \frac{x^{2}}{x}=0
$$

and

$$
\lim _{x \rightarrow 0^{-}} \frac{f(x)}{x}=\lim _{x \rightarrow 0^{-}} \frac{0}{x}=0
$$

(b) We claim that the g is not differentiable at 0 . As in (a), we will use the left- and right-hand limits, showing that they are not equal. We compute

$$
\lim _{x \rightarrow 0^{+}} \frac{g(x)}{x}=\lim _{x \rightarrow 0^{+}} \frac{x}{x}=1
$$

and

$$
\lim _{x \rightarrow 0^{-}} \frac{g(x)}{x}=\lim _{x \rightarrow 0^{-}} \frac{0}{x}=0
$$

(c) We claim that h is not differentiable at 0 . Indeed, if h was differentiable at 0 , then $\lim _{x \rightarrow 0} \frac{h(x)}{x}$ exists. Since $x_{n}=1 /(\pi n+\pi / 2)$ converges to 0 , it follows if h were differentiable we would require that $\lim _{n \rightarrow \infty} \frac{h\left(x_{n}\right)}{x_{n}}$ exists. But

$$
\frac{h\left(x_{n}\right)}{x_{n}}=\frac{x_{n} \sin \left(1 / x_{n}\right)}{x_{n}}=\sin (\pi n+\pi / 2)=(-1)^{n+1}
$$

Since this sequence does not converge, h cannot be differentiable at 0 .
(d) We claim that k is differentiable at 0 . Indeed,

$$
\lim _{x \rightarrow 0} \frac{x^{2} \sin (1 / x)}{x}=\lim _{x \rightarrow 0} x \sin (1 / x)=0
$$

This limit exists by the squeeze theorem, since $|x \sin (1 / x)-0|=|x \sin (1 / x)| \leq|x| \rightarrow 0$.

